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The dynamics of a dissipative two-level system in a monochromatic field is studied numerically using
an iterative path integral scheme that is based on the finite memory range of dissipative influence func-
tionals. The focus of the paper is on the interplay between dissipation and field-induced localization or
coherent tunneling. In accord with recent predictions based on approximate treatments, we find that
weak dissipation can stabilize the localized state while strong dissipation destroys it. We also demon-
strate the possibility of inducing and maintaining large-amplitude coherent oscillations by exploiting the

phenomenon of quantum stochastic resonance.

PACS number(s): 05.45.+b, 03.65.—w, 73.20.Dx, 73.40.Gk

I. INTRODUCTION

The possibility of using tailored laser pulses to achieve
product selectivity in polyatomic processes has attracted
much attention in recent years [1-3]. In order to lead a
chemical reaction toward the desired products one must
overcome the consequences of intramolecular vibrational
energy redistribution. Manipulating charge transfer in
nanodevices requires controlling dissipative mechanisms
such as electron-phonon interactions [4,5]. In all the
above cases, coupling to multidimensional environments
is responsible for the inadequacy of simple control
schemes.

To date, most theoretical approaches to the problem
have been implemented either on small molecules whose
dynamics can be extracted by accurate numerical quan-
tum mechanical methods or on dissipative systems via
approximate analytical treatments [1-3].

This paper reports the first accurate numerical study of
tunneling control in dissipative environments using gen-
eric continuous-wave laser fields. For simplicity, we
study a symmetric two-level system (TLS) coupled to a
harmonic bath and driven by an oscillatory coherent
force or by quantum mechanical squeezed light. We as-
sume that a localized state of the TLS has been prepared
which might correspond to a hydrogen atom bonded to
one of two neighboring atoms during an isomerization re-
action or to an excited electron at one site of a double-
quantum-well structure. In the absence of driving and
for zero system-bath coupling the localized state will exe-
cute sinusoidal oscillations between the two equivalent
sites. Dissipation generally tends to suppress coherence
[6,7] and the dissipative TLS approaches the thermal
equilibrium state with equal populations at both sites.
The addition of a time-dependent perturbation can
change the above picture dramatically, leading under cer-
tain dissipationless conditions to destruction of coherent
tunneling [8].

In the present study we explore the interplay between
driving and dissipation in relation to the TLS dynamics.
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We are concerned with two questions: First, can the TLS
retain its localization for long periods in spite of its cou-
pling to the dissipative environment? Second, can one
sustain large-amplitude coherent oscillations? The first
question has been the subject of numerous theoretical ar-
ticles on localization in driven bistable systems [8-17],
and we compare our results to these analytical predic-
tions. In a recent Letter [18] we have explored the
second question in conjunction with a phenomenon
known as stochastic resonance. Here we present a more
detailed account of this study.

Central to this work is the development of an iterative
path integral scheme for calculating the evolution of the
reduced density matrix. Adopting a discretized path in-
tegral representation of the propagator and integrating
out the harmonic bath leads to a path integral in the TLS
space that includes the effects of the dissipative environ-
ment through the Feynman-Vernon influence functional
which is nonlocal in time [19]. As Monte Carlo integra-
tion methods fail due to the oscillatory nature of the in-
tegrand, it is hopeless to attempt multidimensional in-
tegration in order to obtain long-time dynamics. We
have recently shown [20-22] that the nonlocal
“memory” terms in the dissipative influence functional
decay rapidly as a result of destructive phase interference
among a continuum of harmonic bath degrees of free-
dom. Dropping negligible long-memory terms, one can
decompose the multidimensional integral into a series of
lower-dimensional integrations. This gives rise to the
tensor multiplication scheme which allows iterative prop-
agation over extremely long time periods. In this paper
we extend that scheme (which was originally formulated
for time-independent Hamiltonians) to include a time-
dependent driving term.

Section II describes the tensor multiplication scheme
adapted for the case of a time-dependent Hamiltonian.
Section III discusses the dissipationless case and the rela-
tionship between the current model and that of a TLS
coupled to a quantized field. The numerical results for a
TLS localized by a strong continuous wave (cw) field and
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interacting with a dissipative environment are presented
in Sec. IV. The conditions that lead to enhancement of
coherent motion in the dissipative TLS are described in
Sec. V, and Sec. VI concludes.

II. THE TENSOR MULTIPLICATION METHOD

Recently, we proposed [20—-22] and applied to a num-
ber of problems [18,23] a path integral scheme for propa-
gating the reduced density matrix of a dissipative system
in an iterative fashion. This scheme, which uses as a
starting point accurate system-specific propagators based
on physically motivated reference potentials [24—-29], was
originally formulated for Hamiltonians without explicit
time dependence. The need to treat the problem of a
quantum mechanical system interacting with a classical
time-dependent electromagnetic field prompted us to ex-
tend the method to time-dependent Hamiltonians, a task
that will be described in this section.

The Hamiltonian of a symmetric TLS interacting
linearly with a bath of harmonic oscillators and with a
time-dependent external field is given by

H=—#Q0,+3 p}/2m;+1im;0}(x;+c;o,/m;w})
j

+V(to, , (n

where V(t)=Vycos(wgt) and o, and o, are the 2X2
Pauli spin matrices. In the two-state approximation for a
particle in a symmetric double-well o, is the discrete
analogue of the particle coordinate, i.e., (o,) equals 1
(or —1) if the particle is located in the right (or left) well.

J

<kak|U(t +At,t)'0k_1xk_1)z(0k|Uo(t +At,t)|0'k_1>n<xj,k|e
J

where o, ==*1.
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The population difference between the two eigenstates of
the TLS, which are separated by energy 27X}, is given by
(o, ). All information about the bath necessary to de-
scribe the reduced dynamics of the system is contained in
the spectral density function

2

Cj
do—ow;) . (2)
m;a;

_T
J(w)= 2?

Our aim is to find a numerically tractable representa-
tion for the evolution of the reduced density matrix,

p(1)=Tr, U(£,0)p(0)U " 1(z,0) , 3)

where Tr, denotes the trace with respect to all bath de-
grees of freedom and U(¢,0) is the time evolution opera-
tor that propagates the total wave function through time
t. In order to obtain accurate short-time evolution, the
Hamiltonian is partitioned into a time-dependent refer-
ence system

Hy(t)=—#Qo,+V(t)o, , (4)

and a time-independent bath Hamiltonian

H.,,=H—H,=3Hx;p;0) . (5)
J
Using a symmetric splitting,
Ut +At,t)ze_iH“'“"At/2ﬁUo(t +At’t)e—iHem,At/2ﬁ ®

where U,(t +At,t) is the time evolution operator for the
reference system, Eq. (4), one obtains the following
short-time propagator:

—iH (0, )At/2% —iH (0, _,)At/2#
10k o, TH Tk %610 )

Using the propagator of Eq. (7) and assuming that the system is uncoupled from the bath at £ =0 so that the initial
density matrix is a product of the system and bath density matrices,

(8)

the reduced density matrix can be recast in discretized path integral form

pla”,o’;t)=(c"|p(2)c")

=2 2

ag'=:tl af—=j:1

2 2 2

+ _ - — - —
on—1=flog =flo =+I

3 (a"|Uglt,t —AD|of_1) - Lo |Uy(ALO) oG )

0;_1=:tl

X{og lpo(®log Y og U (ALO) o) -+ - Con_|Us  (t,t —AD)|o")

+ _+ + - - -
XI(og,0{,...0§-1,0",00,0{,...0y_1,0";At) . 9)

Here the superscripts + refer to the forward and back-
ward paths that evolve in the positive and negative time
directions and, if the harmonic oscillator bath has started
out in thermal equilibrium, its influence functional is gen-
erally of the form

k
+ - + % -
S (0 =0k MOk — MO k) | »
0k'=0

I=exp{—

TM=

1
#

(10)
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where oy=0" and oy=oc' and the temperature-
dependent coefficients 7;,. have been given in [21] in
terms of the spectral density.

The tensor multiplication scheme formulated in [20] is
based on the observation that the coefficients 7;;,, which
represent a discrete analogue of the bath response func-
tion [30], fall off rapidly as |k —k’| is increased. In other
words, the bath-induced memory has finite range, leading

J

Mk, +1), 4
A ™ (0041 - -

where
1 - _
Io(oi)=exp l—g(oi—ak MMk O & — Mok )’ ,  (12)
£+ - 1, + -
Iz (0%, 0k +ar)=€xp "%‘(Uk+Ak_Uk+Ak)

+ % -
X (Me+ak, k0K — Mk +ak, kT k )] )

Ak=1. (13)
The matrix K(oi,078,;(k +1)At,kAt) propagates the
density matrix of the time-dependent system, Eq. (4),
through time increment At), i.e.,

poloi ik + DAY= K (0,074 1;(k +1)At,kAt)
+

3

Xpolot;kAtL) , (14)

(Ak

1

A
xA'

4) Fim(lzlle’ p)roject out the auxiliary dimensions in the
tensor A ™ to obtain the reduced density matrix at
time N At

ploxs;NAt)
(Ak_. )
=4 " (0NN

= =0Niak, —1=OGNAN(0F) . (19)

) (Ak +1)
A (gt o sk +1)At)= AT max
k+1 k+Ak ..
o'k:t=:t

k )
max (o.l:‘t,
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to decay of long-time interactions in the influence func-
tional. Neglecting all 7, corresponding to |k —k’'|
greater than some Ak, ,, enables one to represent Eq. (9)
as a Ak, th order iterative tensor multiplication [31].
Representing the variables {0} collectively as a four-
dimensional array (vector), the scheme consists of the fol-
lowing steps [22].
(1) Define a propagator tensor A of rank Ak, +1 as

,o,fﬂkm;(k +1)At,kAt)=K(oF, 08, ;(k + DAL kA o0 (oF, 05, )

XIy(05,0%42) 'IAkmax(Uf’Uf+Akmx) , (11)
f
and is equal to
K(oF, 08 3(k +1)At,kAt)
={o i 1|Ug(k +1)At,kAL) o)
X{oi |Us (k +1)At,kAt)|ok4,) . (15)

The system propagators are calculated by solving numeri-
cally the Schrodinger equation

i#iUy(t,t0)=Hy(1)Uy(1,t,) , (16)

subject to the ““initial condition”
(0"! Uo(to,to)lo' ) =8010. .

(2) Define the reduced density tensor A(Ak""”‘) with the
following initial condition

(Ak_..)
A" (¥, 0F, ...

08 _30=(0o |pe(0)log ) .
(17

(3) Propagate A(Ak“’“) through time At according to
the relation

(0%, s Tiksar, 3(k+1DALKA?)

Ok ok, —1KAT) . (18)

III. ZERO DISSIPATION: FLOQUET PICTURE
OF THE DYNAMICS AND QUANTUM-CLASSICAL
CORRESPONDENCE

A. The Floquet theorem

Before proceeding to the study of dissipative driven
systems, it is helpful to introduce the Floquet formalism
for the dynamics of periodically driven quantum systems.
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The Floquet theorem [32] asserts that if the Hamiltonian
of a system is periodic in time with period 7,

Hy(t)=H,(t +7), then there are solutions to the
Schrodinger equation,

ifig, (1)=Hy(t)h,(t) , (20)
that are eigenfunctions of the Floquet operator
F=Uy(t +,t),ie.,

$,(t+7r)=¢ =" (1) . 21)

This theorem reflects the fact that the time-translation
operator for propagation by multiples of the period 7
commutes with the Hamiltonian. The states ¢, are the
Floquet states and the quantities €, are the quasienergies.
Apparently, if €, is a quasienergy, then the family of
quasienergies €, +k#iw (where k is an integer) corre-
sponds to the same physical state. A way to uniquely
define the quasienergy is to require that it approach con-
tinuously the energy eigenvalue of the system as the
time-dependent part of the Hamiltonian vanishes. The
quasienergies play the role of energies in the stroboscopic
picture of the dynamics: as long as the time is only al-
lowed to be a multiple of 7, the time evolution of the Flo-
quet states is the same as that of energy eigenstates for a
time-independent Hamiltonian.

B. Quantum-classical correspondence and localization

A classical harmonic oscillator with frequency w, and
mass p large enough for it not to be affected by the cou-
pled quantum mechanical subsystem will produce the
same response as the periodic field V(t)=Vcos(wgyt).
On the other hand, a fully quantum mechanical version
of the model can be studied [33,17], with the Hamiltoni-
an,

- | S B P
H=—#Qo0,+CQo,+ Z + E,ua)OQ +H,, ,
which should in the classical limit reproduce the effect of
the classical periodic field. The Hamiltonian of this type
describes, e.g., a two-level atom in a resonator cavity [33].

The Hamiltonian (22) represents two coupled parabolic
surfaces, V; ,(Q)=pw}(Q+C /uw})®/2—C?/2p0} which
intersect at Q =0. In the absence of tunneling (Q=0)
each energy level of the harmonic oscillator
E, =%wy(n +1/2) would be doubly degenerate. Tunnel-
ing in general lifts this degeneracy and splits each energy
level into a doublet. If a level turns out to be degenerate,
then the system once prepared on one of the surfaces will
never reach the other.

In the semiclassical approximation for the oscillator
one finds [17] that the splitting A, of the nth doublet is
equal to the quasienergy splitting of the classically driven
TLS with the field amplitude given by

LpwdVi=C*iwyn +1/2) .

(22)

(23)

On the other hand, the splitting can be evaluated quan-
tum mechanically using nearly degenerate perturbation
theory

DMITRII E. MAKAROV AND NANCY MAKRI 52

A, =4, [ dQY,(Q +C /pwd,(Q —C/uwd)

=exp(—a/2)L,(a), (24)

where Ay=27%Q, a =2C?/#uwy, ¥, are harmonic oscilla-
tor eigenstates with frequency w, and L, is the nth
Laguerre polynomial. In the limit n >>1 zeros of the
Laguerre polynomial a; are related to the zeros of the
Bessel function J(z) by [34]

a;=z}/(4n +2) .

Using Egs. (23) and (24) one obtains the localization con-
dition in the form

2V0/ﬁw0=2j , (25)

which is the standard result for the classically driven TLS
[8-10]. The quantized version of the model is very in-
structive and will be extensively discussed in Sec. IV to
describe the effect of dissipation on laser-induced locali-
zation.

IV. LOCALIZATION VERSUS DISSIPATION

Grossman et al. [35] and Dittrich, Oeschlagel, and
Hinggi [36] have shown, based on approximate treat-
ments such as a master equation approach and stochastic
differential equations, that under certain conditions dissi-
pation should stabilize a nearly localized state rather than
destroy it. Such stabilization is also observed for the
model of a TLS coupled to a single cavity mode [17,33]
and a macroscopic environment with continuous spec-
trum: As explained in Sec. IIIB, the spectrum of the
system consists of tunneling doublets spaced by the vibra-
tional quantum of the cavity mode #iw,. If there is an
upper cutoff . <w, for the bath spectral density such
that J () vanishes if ® > ., then phonon-induced transi-
tions between different doublets are prohibited in low or-
ders of perturbation theory. Therefore, once the system
is prepared in a single doublet A ,, its dynamics is well de-
scribed by an effective Hamiltonian H 4=—(A, /2)o,,
which enables one to use the elaborate theory of the dissi-
pative TLS [6,7].

Based on quantum-classical correspondence, the same
dynamics should follow from the time-dependent Hamil-
tonian of Eq. (1) after one replaces H(¢) by a TLS Ham-
iltonian of the form H ;= —(Ae/2)o,, where Ae is the
quasienergy splitting of the driven TLS. Such a replace-
ment is superficially similar to the well known rotating
wave approximation [37], which also reduces the time-
dependent problem to a time-independent one, and can
be justified only in the vicinity of the localization point
where the quasienergy splitting is small.

For concreteness, consider the case of the Ohmic spec-
tral density with exponential cutoff,

J(w)=(mha/2)wexp(—w/w,) . (26)

For temperatures not too low but such that k3T <#w,,

the TLS relaxes to the equilibrium state with a rate given
by [6,7]
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172 C(a)
2 T(a+1/2)

whence the incoherent tunneling rate decreases with in-
creasing temperature if the Kondo parameter a is less
than 1.

An important conclusion is that the stationary state of
the driven two-level system is, to a good accuracy, the
thermodynamic equilibrium state of a time-independent
TLS with an appropriate splitting, leading to the possibil-
ity of manipulating this equilibrium by changing the field
[38]. The same picture emerges from Dakhnovskii’s
analysis of the noninteracting blip approximation for the
dynamics of a driven TLS [39]. However, this picture en-
tails a time-independent equilibrium state of the two-level
system. Dakhnovskii [39] argued that the time-
dependent corrections to the equilibrium state should be
small in the case of strong dissipation and/or near the lo-
calization point; otherwise this simple picture is invali-

(mkp T /#0,. )1, (27)

k=(Ae/Ha, )

(o))
0.6 4
A 024
Nt ! -
s b \\ L, T T T
\% —-0.2 N
—-0.8
"‘10 T T T T T T I
0.0 2.0 4.0 6.0 8.0 10.0
Qt
(b)
1.0
0.6 -
A 024
=z
o i
\% -0.2 -
—-1.0 T T T 1 T : T ;
0.0 2.0 4.0 6.0 8.0 10.0
Ot

FIG. 1. The expectation value {o,(¢)) plotted as a function
of Qt for a symmetric TLS driven by a monochromatic field
with frequency w,=10.0Q and amplitude V,=11.96575%Q.
The cutoff frequency is w,=7.5Q. The Kondo parameter is
a=0.16, the temperature is (a) kg T=2#Q and (b) kz T =207).
Dashed line: field-free dynamics (¥, =0). Thin solid line: dissi-
pationless case (a=0).
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dated by time-dependent contributions to the density ma-

trix in the steady state. No matter how small, these are
responsible for the delocalization in the case where the
quasienergy splitting is exactly zero and the system is lo-
calized in the absence of coupling to the environment:
Indeed, viewing coupling to the bath as random noise, it

(@

<o,(t)>

()

<o, (t)>

©

<o,(t)>

20.0
0t

FIG. 2. The expectation value {o,(¢)) plotted as a function
of Qt for a symmetric TLS driven by a monochromatic field
with frequency wo=10.0Q and amplitude V,=10.5%Q. The
cutoff frequency is w.=7.5Q0. The Kondo parameter is
a=0.04, the temperature is (a) k3 T=1.333#Q, (b) k3 T=10#1Q,
and (c) kz T=407Q. Dashed line: field-free dynamics (V,=0).
Thin solid line: dissipationless case (a=0).
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is natural to expect that such noise should destroy phase
coherence that is clearly necessary to maintain the local-
ized state [14,15]. Therefore, any localized state should
eventually be destroyed, unless there is a spontaneous
symmetry breaking effect produced by the dissipative en-
vironment itself.

These two antagonistic tendencies, stabilization of the
localized state and delocalization, have been observed in
numerical studies of the driven dissipative double well
[35,36], where dissipation was taken into account by
means of a random force component in the Hamiltonian
or by using master equation techniques. In a double well
another mechanism of destruction of the localized state is
also possible [17], which involves transitions to upper
doublets of the double well where the localization cri-
terion of Eq. (25) does not hold. Our present analysis is
done on the simpler model of a two-level system and is
not concerned with such a mechanism.

Our numerical results presented in Figs. 1 and 2
confirm that weak dissipation stabilizes a nearly localized
state while strong dissipation tends to destroy localiza-
tion. Figure 1 displays the average position of the TLS
driven by a classical field of frequency wy=10{) and am-
plitude V;=11.965 75%4Q. In the initial state the position
is taken to be {0 ,(0))=1. In the absence of dissipation,
these parameters correspond to exact localization at
times which are multiples of the period. With finite
values of the Kondo parameter, Fig. 1 shows that
(0o,(t)) decays with slope which increases with tempera-
ture. It is also seen that localization of the driven TLS is
destroyed more slowly than in the field-free case. In Fig.
2 a driving field of the same frequency is used, but the
field amplitude V,,=10.57%€ is now shifted slightly away
from the localization condition. The average position
(o,(t)) is shown in Fig. 2 at three different tempera-
tures. It is seen that weak dissipation can aid localization
rather than destroying it, in accord with the observations

<o,(t)>, <o (t)>

T T T T T T T 1
0.0 6.0 120 18.0 24.0 30.0
Ot

FIG. 3. The expectation values {o,(¢)) (heavy solid line) and
(o,(t)) (thin solid line) plotted as functions of Q¢ for a sym-
metric TLS driven by a monochromatic field with frequency
@o=10.0Q and amplitude V,=10.5%Q. The cutoff frequency is
w,=7.5Q. The Kondo parameter is a=0.04, the temperature
kp T=1.333%Q.
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made in [35,36]. Here the temperature dependence of the
delocalization rate in the dissipative TLS is not monoton-
ic: At low temperatures, {o,(¢)) decays more slowly
than in the dissipationless case, in agreement with the re-
sult of Refs. [35,36]. Modest increase of temperature
leads to further stabilization of the localized state, while
faster decay toward equilibrium is observed at high tem-
peratures. As seen in Fig. 3, these effects arise from
(nearly) periodic fluctuations in the TLS eigenstate popu-
lations induced by the interplay between the driving field
and dissipation.

The effects of a quantum mechanical picture of the ra-
diation, where the field is in an eigenstate of the number
operator, are explored in Fig. 4. This figure shows the
dissipative dynamics of a TLS coupled to a quantum os-
cillator, Eq. (22), in the state with quantum number
n=1. As described in Sec. III B, the parameters of the
quantum oscillator were chosen to correspond to those of
the classical field of Fig. 2. However, because the quan-
tum number 7 is low and the semiclassical theory for the
quasienergies [17] is not accurate in this regime, the cou-
pling C had to be slightly adjusted from that given by Eq.
(23) in order to provide the energy splitting of the n =1
doublet exactly equal to the quasienergy splitting in the
classical field and thus to produce the same oscillation
period in the absence of dissipation. The value of C need-
ed for this is such that the value of ¥V, that follows then
from Eq. (23) is 10.6557(Q) rather than the classical field
amplitude 10.57%Q2. Apart from the small wy-periodic
fluctuations in the classical case of Fig. 2, the
dissipation-free dynamics is identical for the classical and
quantum fields. As in the case of classical driving, for
moderately high temperatures #A /kz T =0. 1, dissipation
results in incoherent relaxation with a rate that decreases
as the temperature is increased, while at higher tempera-
tures (#iA/kzT=0.025) the relaxation rate increases
with the temperature. This destruction of localization is

<o, (t)>

—-1.0 - T \ T T T -
0.0 10.0

Ot

FIG. 4. The expectation value {o,(¢)) plotted as a function
of Q¢ for a symmetric TLS coupled to a quantum cavity field
Eq. (22) in the first excited state at temperature kp T =10#Q
(solid line) and kp T =407 (dashed line). The bath parameters
are the same as in Fig. 2, see text for the other parameters.
Dashed line: dissipationless case.
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caused by the bath-induced transitions among different
doublets of the harmonic oscillator coupled to the TLS,
which invalidate the independent doublet picture dis-
cussed in Sec. II B.

V. LARGE-AMPLITUDE COHERENT OSCILLATIONS

As we have seen in Sec. IV, strong periodic fields tend
to suppress periodic oscillations of the particle in the
long-time limit. An interesting question is whether one
can induce large-amplitude tunneling oscillations by a
suitable monochromatic field. In a recent letter [18], we
argued that this is possible with a field that is tuned near
resonance with the transition between the two eigenstates
of the TLS w,=~2(). Here we present a more detailed ac-
count of the theory and more numerical calculations
showing a strongly nonlinear response to the periodic
force in this regime.

Figure 5 presents an example of large-amplitude
coherent oscillations obtained with the resonant field
V,=0.5%0Q. The dependence of the oscillation amplitude
on the Kondo parameter « is explored in Fig. 6, demon-
strating a pronounced maximum. The value of a where
the maximum occurs is proportional to V. Such a peak
is known from classical studies [40,41] as a “‘stochastic
resonance,” a phenomenon where the response of a non-
linear system to the external periodic force is enhanced
by noise. Such a phenomenon has also been predicted for
a quantum overdamped asymmetric bistable system [42].
For the cases of high- and low-frequency driving, a
variety of nonlinear effects in the steady-state dynamics
of a dissipative TLS have been studied analytically, based
on the noninteracting blip approximation [43,44].

The case where the field frequency is comparable to
the TLS frequency is more difficult to handle analytically.
If the system-bath coupling is weak, though, one might
hope that the traditional optical Bloch equations, which
treat the driving field in the rotating wave approxima-

1.0
A
= 0.5
~
o 4
\3
- 0.0 - -
A
=
o —0.5-
Vv
‘_']“O**"' T T T T T T T
0.0 5.0 10.0 150 20.0 25.0

Ot

FIG. 5. The expectation values {o,(z)) (solid line) and
(o,(t)) (dotted line) plotted as functions of Q¢ for a symmetric
TLS driven by a monochromatic field with frequency w,=2Q
and amplitude V,=0.5#) at temperature kz T=0.2787€Q. The
bath cutoff frequency is w,=7.5Q), the Kondo parameter
a=0.16. Chain-dotted line: field-free dynamics ( ¥, =0).

5869
0.2 T
0.15 -
A
& 0.1
\/ -
0.05 -
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FIG. 6. Steady-state oscillation amplitude (o, ), plotted as a
function of the Kondo parameter for wy,=2Q, V,=0.5%Q [cir-
cles: simulation data, solid line: Eq. (36)], and V,=#Q [squares:
simulation data, dashed line: Eq. (36)]. The temperature is
kg T =4.0#(Q, the bath cutoff frequency o, =7.59Q.

tion, will produce a meaningful result. Specifically, these
equations read (see, e.g., [37])

(7 ,)=—(Vo/BN5,)—(1/m){F, ) — (o)),

(5,)=020—w)(&,)—(1/m,)7,)+(V, /A7, ) ,
(5,)=—020—w){&,)—(1/1,)(&,) (28)

where the tilde indicates the rotating-frame representa-
tion in which the Pauli operators are given by

o,=0a,cos(wgt)+o,sin(wgt) ,

g,=0,cos(wgt)—0o,sin(wgt) ,

Q
{

X ax‘

The population relaxation and dephasing times [45] 7,
and 7,, respectively, are given by

7 1=24"1J(2Q)coth(#Q /ky T) (29)
and for the present model 7,=27,. Finally,
(0%) =tanh(#Q/kyT) (30)

is the equilibrium value of (o, ) in the absence of the
field.

Solving Egs. (28) for the limiting steady-state expecta-
tion values of the Pauli operators and transforming back
to the original reference frame one obtains

<Ux >lim= < a‘.x >lim
Vinm/m |7

1+72(20—w)?

s

=tanh(#Q/k,T) |1+

(31)

and the maximum steady-state oscillation amplitude of
(o) (which corresponds to (o, ) =0)
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(0,20=(& Vm+ (&, ))""?,
_ Von[1+(0y—2Q)* 3] 2 /#
1+ Vir /B + (w0,—2Q)%73

tanh(7Q/kpT) .

(32)

Here the subscript “lim” denotes constant steady-state
values of the Pauli operators in the rotating frame and
(o,)o is the steady-state oscillation amplitude of
(o,(t)), and is given in the rotating-frame picture by the
projection of the expectation value of the Pauli spin
operator onto the yz plane.

Recently, it has been shown [46] that Eqs. (28) are only
valid in the weak field limit and are to be modified for
strong fields. The generalized Bloch equations obtained
in Ref. [46] are different from Egs. (28) in that the relaxa-
tion times 7, and 7, are field-dependent and also cross re-
laxation terms are present. The validity of the rotating-
wave approximation itself becomes questionable away
from the resonance conditions. For these reasons Eq.
(32) yields an incorrect result in the limit of low-
frequency driving wy—0. Indeed, for small ¥V, one ex-
pects in this limit that the two-level system will follow
adiabatically the external field, resulting in a value of
{0, which is independent of 7, and 7,. Instead, Eq.
(32) predicts that the oscillation amplitude { o, ), will de-
pend on 7, and vanish in the limit of short dephasing
times.

The analysis that follows avoids use of the rotating-
wave approximation and, as will be shown below, pro-
duces meaningful results in the parameter range studied
numerically, as well as in the limit of low or high driving
frequency: We define an instantaneous energy bias of the
TLS due to both the driving field and the bath oscillators
as f(t)=V,cos(wy, )+ 3 ;c;x;(t). Then the Heisenberg
equations of motion for the evolution of the Pauli ma-
trices are

o, (t)=—=20,(t)f(t) /%,

(33)
0,(1)=2Q0,(t)+20,()f (1) /%,
o,()=—2Q0,(t),
whence (o, ) obeys the equation
(8,)+2(Q)0o,)=—4Q(0, )V, /#)cos(wt)
—4Q/WT c;{o,x;(1)) . (34)
J

Next we use the weak coupling approximations formulat-
ed by Dekker [47], which enable one to convert the last
term in Eq. (34) to a damping term and further treat it in
the Markovian approximation. In doing so, the bath is
treated as causing stochastic energy bias fluctuations that
are unaffected by the dynamics of the TLS itself. As a re-
sult, a harmonic oscillator equation is obtained with the
periodic force proportional to the population difference
{0, ) between the two eigenstates of the TLS
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(3,.)+2)Xo,)+2/m)6,)=—40(0,)
X(Vy/fi)cos(wgt) .
(35)

To obtain an approximate solution to Eq. (35), we use the
fact that the population difference between the TLS
eigenstates (o, ) stays practically constant in the steady
state, as shown in Fig. 5. This observation suggests using
the steady-state value Eq. (31) obtained from the
rotating-wave approximation. Note that for ¥, small
enough, Eq. (31) gives the correct answer in the limit of
high or low driving frequency, as well as for resonant
pumping.

With the approximation of Eq. (31), Eq. (35) is the
standard equation of motion for a forced harmonic oscil-
lator with dissipation. The steady-state solution oscil-
lates with the amplitude

4QV¥,

<Ux)0= (Ux>lim' (36)

Al (0§ — 402+ wj /7]

(a

<0,>0

(o)
0.3

<0,>

Wo

FIG. 7. Steady-state oscillation amplitude {o, ), plotted as a
function of the driving field frequency w, for the field amplitude
Vo equal to (a) 0.147Q and (b) 0.54Q. The temperature is
kpT=4.0%Q, the Kondo parameter a=0.01, the bath cutoff
frequency w,=7.5Q. Squares: simulation data, solid line: Eq.
(36), dashed line: Eq. (32).
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Comparing Eqgs. (32) and (36), both give identical results
at resonance wy=2€. The theory is in good agreement
with our numerical data, as indicated in Fig. 5. For reso-
nant pumping, the maximum oscillation amplitude is
achieved if the field amplitude takes an optimal value of

VPt =#i(rr,) "1/ (37
and is equal to
(o, )r*=(7,/7,)"*tanh(#Q /k3 T) ,

which is independent of the coupling to the bath for the
current model where 7,=27,. For a fixed field intensity,
the theory predicts a stochastic resonance as a function of
the relaxation time, in accord with the numerical data.

Away from the resonant condition wy=2(, the results
predicted by Eqgs. (32) and (36) are different. While Eq.
(36) gives the correct low-frequency (static) limit for small
Vo, Eq. (32) does not. Further, for a high-frequency field
Eq. (32) predicts that the oscillation amplitude will be in-
versely proportional to w, while Eq. (36) yields a wg 2
dependence. The frequency dependences given by Egs.
(32) and (36) are compared with the numerical data in
Fig. 7, demonstrating that our theory provides an accu-
rate quantitative description of the response of the TLS
to an external periodic force throughout the entire fre-
quency range while the result given by the optical Bloch
equations is correct only for the resonant field.

In contrast with the rotating-wave approximation, our
data indicate that large-amplitude oscillations can be
achieved even with an appropriate off-resonant field, as
shown in Fig. 7(b) where the oscillation amplitude exhib-
its two pronounced off-resonant peaks of approximately
the same magnitude as the single peak [Fig. 7(a)] obtained
for a weaker driving field V=~ VP,

VI. CONCLUDING REMARKS

In this paper we have systematically investigated the
dynamics of dissipative two-level systems in the regime of
strongly nonlinear response to the driving field. To be in
this regime, the field need not be very strong on the ener-
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gy scale of the TLS; in fact, as shown in Sec. V, linear
response is violated at fields arbitrarily weak as long as
the coupling to the dissipative environment is weak
enough.

We have confirmed numerically the finding of Refs.
[35,36] that the localized effect of strong fields (V> #Q)
can be stabilized by weak dissipation in a certain temper-
ature range. In this range the effect of a quantized cavity
field [33] is similar to that of a classical field, suggesting a
simple picture of the dynamics based on an effective
time-independent TLS [17].

The possibility of inducing and sustaining coherent os-
cillations whose amplitude is not significantly suppressed
by dissipative effects is another important conclusion,
which suggests ways of overcoming the consequences of
intramolecular vibrational energy redistribution in vari-
ous laser control schemes [1-3]. This effect can be ac-
complished with a weak optimum field proportional to
the relaxation rate, as opposed to mode-locking ap-
proaches [48] that yield the best results if the driving field
is strong. A different method of inducing large-amplitude
charge oscillations in an asymmetric electron-transfer
system with strong field pulses has recently been pro-
posed in [49], based on the idea that a strong driving field
may affect the equilibrium of the TLS.

From a technical point of view, we have demonstrated
that the tensor multiplication scheme [20-22] is well
suited to describing the long-time dynamics of laser-
driven systems and thus succeeds in exploring the nature
of the steady state of a strongly nonequilibrium driven
nonlinear system, a task that other numerical methods
have so far failed to accomplish. Potential applications
of this approach are abundant, from calculation of ab-
sorption line shapes to the dynamics of charge transfer in
semiconductor heterostructures. We intend to pursue
these applications in our future work.
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